इंडियन ऑयल कॉर्पोरेशन लिमिटेड (भारत सरकार का उपक्रम) पानीपत रिफाइनरी

डाकघर : पानीपत रिफाइनरी, पानीपत-132140

Ref. No. PR/HS&E/4/367

Τo

The Additional Director(S)
Ministry of Environment & Forests,
Govt. of India,
Regional Office (N.R.)
Bays No. 24-25,
Sector-31-A, Dakshin Marg,
Chandigarh - 160047

INDIAN OIL CORPORATION LTD.
(Govt. of India Undertaking)
PANIPAT REFINERY
PO - PANIPAT REFINERY,
PANIPAT- 132140 (Haryana),
Fax: 0180-2578833

Date: 27.07.2012

Ref. No. J-11011/27/91-IA.II(I) dated 16.07.1992 - Panipat Refinery

Sub: Compliance report of environmental conditions - Panipat Refinery

Dear Sir,

Please find enclosed herewith the half-yearly compliance report of the MoE&F stipulations for the period Jan'12-Jun'12 w.r.t. Panipat Refinery (Ref no. J-11011/27/91-IA.II(I) dated 16.07.1992)

Thanking you

Yours faithfully,

(V.S. Dhakate)

Chief Manager (HS&E)

Encl: (i) Copy of Stack emission monitoring results

(ii) Copy of fugitive emission report (iii) Greenbelt development plan

(iv) Copy of Hazardous Waste authorization

CC: RO, HSPCB, Panipat

COMPLIANCE TO ENVIRONMENTAL CLEARANCE STIPULATIONS FROM MOEF FOR PANIPAT REFINERY

Your Ref No. J-11011/27/91-IA.II(I) dated 16.07.1992

	Your Ref No. J-11011/27/91-IA.II(I) dated 16.07.1	992
SI.	EC Conditions	Compliance Status
No.		
1.	The project authority must strictly adhere to the	We have made a system to ensure strict
	stipulations laid down by the state pollution control	compliance of conditions of HSPCB /
	board and state government.	Environment department etc. in NOC.
2.	Any expansion of the plant, either with the existing	Already complied. PR Expansion to 15
	product mix or new products can be taken up only	MMTPA has been accorded EC vide letter
	with the prior approval of this ministry.	no. J-11011/7/2004-IA-II(I) dated
		09.08.04.
3.	Sulphur recovery unit with more than 90% sulphur	With the expansion of Panipat Refinery to
	recovery should be installed and commissioned	15 MMTPA, 3 SRUs (out of five SRUs)
	before the project is completed, and measure for its	remain in operation and rest two SRUs
	continuous operation must be taken.	remain in standby mode.
	Technoeconomic feasibility study for additional	
	standby sulphur recovery system may be initiated	
4	after the installation of first unit.	Culphur content of fuel oil used in
4.	Low sulphur fuel (sulphur content not exceeding 1%) should be used in the boilers/furnaces.	Sulphur content of fuel oil used in boilers/furnaces is maintained below 0.5%.
5.	Low NOx burners should be used to avoid excessive	Low NOx burners have been installed in the
5.	formation of NOx.	process heaters.
6.	Total emission of SO2 from the refinery should not	502 emissions is maintained below the
0.	exceed 1 tonne/hr.	prescribed limits. Typical SO2 emission
	CACCCO I COMICIANI.	data is enclosed as Annexure-1.
7.	The gaseous emissions (SO2, NOx etc.) from various	The gaseous emissions from various process
'	process units should conform to the standards	units conform to the standards as
	prescribed by the concerned authorities, from time	prescribed by HSPCB/MoEF.
	to time. At no time the emission levels should go	
	beyond the stipulated standards. In the event of	The state of the s
	failure of any pollution control system adopted by	Course Inc.
	the unit, the respective unit should be put out of	STANCE LOCAL DE
	operation immediately and should not be restarted	
	until the control measure are rectified to achieve	
	the desired efficiency.	CALOUS (2
8.	Adequate number (a minimum of 7) of air quality	
ĺĺĺ	monitoring stations should be set up in the down-	no. in Refinery township & 5 nos. in Refinery & Petrochemical units) & a mobile
	wind direction as well as where maximum ground level concentration is anticipated. Stack emission	van are in operation. These were set up in
	should be monitored by setting up of an automatic	consultation with HSPCB. All stacks are
	continuous stack monitoring unit. The data on stack	having online SO2 & NOx analyzers. The
	emission should be submitted to the State Pollution	reports are submitted to HSPCB every
[Control Board once in three months and to this	month. Apr'12-May'12 report is attached
	Ministry once in six months along with the statistical	as Annexure-I.
	analysis. The air quality monitoring station should be	
	selected on the basis of modeling exercise to	
	represent the short-term ground level	
	concentrations.	
	•	

SI. No.	EC Conditions	Compliance Status
9.	Fugitive emissions of hydrocarbons from storage tanks etc. should be minimized by adopting necessary measures.	,
10.	Fugitive emission should be regularly monitored and record maintained.	A typical report of Fugitive Emission is enclosed as <i>Annexure-II</i> .
11.	There should be no change in the stack design without the approval of the State Pollution Control Board. Alternate pollution control system and proper design in the stack should be provided to take care of excess emissions due to failure in any system of the plant.	Stack designs are not changed.
12.	The height of stacks attached to AVU, FCCU and TPS etc. should not be less than 100 m.	The height of stacks attached to AVU, FCCU and TPS etc. have been kept as 100 m.
13.	Total fresh water consumption (Industrial as well as township) should not exceed 8 MGD. Ground water should not be tapped for this purpose.	Complied.
14.	The project authorities must recycle wastewater to the maximum extent possible (at least 25% to 30% to start with). The treated effluent coming out of the plant must meet MINAS.	Treated effluent of ETPs meets MINAS. More than 80% of treated effluent is reused as a feed to RO plant and as a makeup to Cooling Towers.
15.	Adequate number of effluent quality (oil & grease, COD, BOD, suspended solids, phenols, sulphides, pH and flow) monitoring stations must be set up in consultation with State Pollution Control Board.	Complied Online analysers for monitoring quality of effluent (w.r.t. oil, phenol, sulphide, TOC & pH) have been installed at our ETPs.
16.	Maximum recovery of oil from the sludge should be done and residual oily sludge should be incinerated.	Centrifuges/ Melting pit have been provided at the wastewater treatment plant for recovery of oil from oily sludge. Lined pits are provided for storage of residual sludge.
17.	The project authorities must prepare a scheme for solid and hazardous waste disposal. The plan for disposal duly approved from the State Pollution Control Board should be submitted to this Ministry within one year and adequate space should be provided for it within the plant premises.	Four nos. of lined pits of 400 m3 each with shed are existing in Refinery for storage of oily sludge and a spent catalyst yard has been developed for storage of spent catalysts from process units.
18.	A green belt of at least 500 m width and adequate density should be developed and maintained. Selection of the species should be done in consultation with the State Forest Department. A detailed green belt development plan taking into account attenuation factors, soil characteristics etc. should be prepared and submitted to this Ministry within six months.	Greenbelt were developed in consultation with State Forest Department. Details of Greenbelt is attached herewith as a (Annexure-III).

SI. No.	EC Conditions	Compliance Status
19.	A detailed risk analysis study based on Maximum Credible Accident (MCA) analysis should be done and submitted to this Ministry once the process design/technology and layout is finalised. Based on this, a Disaster Management Plan has to be prepared and after approval by the concerned Nodal Agency, should be submitted to this ministry within six months. The impact zone under no circumstances should cross the plant premises.	Complied
20.	A 'no development zone' of minimum 5km radius in between the refinery and the Panipat town should be provided. Where only restricted growth on nonpolluting industries may be allowed (Action - State Govt.)	Controlled zone around refinery premises has been declared by District authority and copy was submitted to MoE&F vide letter no. PR/S&EP/12 dated 14.09.04.
21.	No tree should be cut from the site without prior written order of the competent authority.	Agreed
22.	The industrial township should be located on the northern side of the refinery i.e. in the up-wind direction.	The Refinery township is located about 8 kms (by road) from the Refinery Gate in the upwind direction.
23.	A detailed Rehabilitation Plan for the affected people should be prepared and submitted to this Ministry within 3 months.	Was submitted
24.	Contractors labourers must leave place after the construction work is over to avoid creation of slum in the adjoining areas of the refinery and township.	Complied All the contract labours had left the site after commissioning of Panipat Refinery in Oct'98.
25.	A comprehensive EIA must be prepared and submitted to this Ministry by September, 1993 covering regional implications and 'no development zone' aspects.	Comprehensive EIA report was submitted long back to MoE&F in 1993.
26.	Feasibility of using 20 tonner truck may be studied/assessed wherever road transport is being envisaged and report submitted to this Ministry within three months.	Bulk Movement of Products through Pipeline and rail. Product pipelines to Saharanpur, Najibabad, Meerut, Jalandhar, Rewari have been commissioned long back. Thus reducing TTL loading considerably.
27.	Necessary approval may be obtained from the Regulatory Authority as per Section 5(2) and 5(3) of the Hazardous Wastes (Management and Handling) Rules, 1989 of the Environment (Protection) Act, 1986.	Copy is enclosed as Annexure-IV
28.	The State Govt. should prepare a Master Plan for the region to avoid haphazard growth of industries and human settlements in the area.	Haryana Govt.'s controlled zone and details of controlled zone was submitted to MoEF vide our letter no. PR/S&EP/12 dated 14.09.04.
29.	The project authority must set up laboratory facilities for collection and analysis of samples under the supervision of competent technical personnel, who will directly report to the Chief Executive.	NABL & HSPCB accredited laboratory is functioning in Panipat Refinery since 1998.

SL. No.	EC Conditions	Compliance Status
30.	A separate Environment Management Cell with suitably qualified people to carry out various functions should be set up under the control of Sr. Executive, who will report directly to the Head of the organisation.	A separate department called Health, Safety & Environment (HS&E) has been in existence since the commissioning of Panipat Refinery in the year 1998. The HS&E department is headed exclusively by General Manager, who directly reports to the head of Panipat Refinery
31.	The funds earmarked for the environmental protection measures should not be diverted for other purposes and yearwise expenditure should be reported to this Ministry.	Complied

Anneaule-I

EH HARYANA TEST HOUE

& Consutancy Services

50-C, Sector-25, Part-II, HUDA, Panipat-132 104 (HARYANA)

Ph: (O) 0180-3290403, (M) 94160-17160, Tele-Fax: 0180-2671112, Website: www.haryanatesthouse.net, e-mail: info@haryanatesthouse.net, ml.dua@sify.com,

Test Results of Stack Emissions

Period: April 2012 to May 2012

Unit: Panipat Refinery

S. So.	Sr. Stack Particular No.	Date of Sampling	Тетр.	Temp. Diameter Gas of Stack Velocity (m)		Fiue Gas Volume at 25°C	Particulate Matter (SPM) Limit: Gas: 10	e Matter M) as: 10	Sulp Limit G	Sulphur Dioxide (SO ₂) Limit: Gas: 50 mg/Nm3		Oxides of Nitrogen (NO _x) Limit: Gas: 350 mg/Nm3	Oxides of Nitrogen (NO _x) mit: Gas: 350 mg/Nr		Carbon Monoxide (CO)	onoxide) 0 mg/Nm3		Nickel (Ni)	Vanadium (V)		Nickel+Vanadium Limit: (NI + V) Liquid: 5 mg/Nm3	adium + V) g/Nm3
	BOOT TO		ပွ		(m/sec.)	(Nm3/ Hr.)	mg/Nms Liquid: 100 mg/Nm3	m3 mg/Nm3	Liquid	Liquid: 1700 mg/Nm3	E	Liquid: 4?	Liquid: 450 mg/Nm3		Liquia: 200 mg/Nm3	mg/Nm3						
		(20)				•	mg/Nm ³	kg/hr.	mdd	mg/Nm³	kg/hr.	ppm mdd	mg/Nm³ kg	kg/hr. pp	ppm mg/Nm ³	3 Kg/hr.	mg/Nm ³	3 kg/hr.	mg/Nm ³	kg/hr.	mg/Nm³	kg/hr.
≪I	শ্র									 		_		-							-	
-	NHT (PX-1)	16.05.2012	215	1.00	7.27	12061.67	41.34	0.50	43.11	113.07	1.36	36.67 60	69.14	0.83 6	6.90	0.08		0.0000		0.0000	0.00	0.0000
2	CCR-H (PX-1)	16.05.2012	192	1:90	7.34	46136.32	76.6	0.46	10.78	28.27	1.30	26.39 4	49.75	2.30 6	06.90	0.32		0.0000		0.0000	0.00	0.0000
ы	ISOMER (PX-2)	16.05.2012	207	1.20	7.46	18119.77	29.67	0.18	13.48	35.34	0.64	24.61 46	46.39 0	0.84	6.90	0.13		0.0000		0.0000	0.00	0.0000
44	TATORAÝ (PX-2)	16.05.2012	170	1.20	7.16	18843.63	19.10	0.38	16.17	42.41	0.80	32.62 6	61.51	1.16 8	9.20	0.17		0.0000		0.0000	000	0.0000
S	XYLENE (PX-2)	16.05.2012	220	2.00	7.05	46312.14	22.89	1.06	25.15	65.97	3.06	40.84	76.99	3.57 12	13.80	0.64		0.0000		0.0000	0.00	0.0000
			_								-				-			_				
<u>ω</u>	PTA										,							_			-	<u> </u>
9	Hot Oil Heater (PTA)	17.05.2012	270	2,35	7.80	64227.82	42.52	2.73	68.28	179.06	11.50	55.82 10	105.25 6	6.76 10	0 11.50	0.74	0.0380	0.0024	1.01	0.0649	20.5	0.0673
7	FСРН (РТА)	17.05.2012	215	2.35	7.27	66610.55	44.85	2.99	73.67	193.20	12.87	51.08 96	96.31 6	6.42 8	9.20	0.61	0.0300	0.0020	1.10	0.0733	1.13	0.0753
8	Thermal Oxidizer (PTA)	17.05.2012	85	1.10	1	1	1	1	110.50	289.80	1	54.92 10	103.55	- 12	13.80	,		1		ı	,	<u></u>
																					<u> </u>	
ပျ	TPS/CPP												-			_	_	-			-	
8	Boiler-1 (Utility)	23.05.2012	160	3.04	14.61	252465.58	86.44	24.82	115.96	304.13	76.78	55.85 10	105.30 26	26.58 16	3 18.40	4,65		0.0000		0.000.0	0.00	0.0000
Ç	Boller-2 (Utility)	23.05.2012	197	3.04	14.76	234978.60	95.13	22.35	84.34	221.19	51.97	65.40 12	123.31 28	28.98 14	16.10	3.78		0.0000		0.0000	0.00	0.0000
Ξ	HRSG-1 (CPP)	24.05.2012	188	3.30	6.94	132733.06	62.45	8.29	64.77	169.86	22.55	28.16 53	53.09 7	7.05	8.05	1.07		0.0000		0.000.0	00:0	0,0000
12	HRSG-2 (CPP)	24.05.2012	168	3.30	6.91	138152.90	61.89	8.55	73.76	193.45	26.73	26.97 50	50.84 7	7.02 6	6.90	0.95		0.0000		0.0000	0.00	0.0000
5	13 HRSG-3 (CPP)	24.05.2012	172	3.30	6.82	135127.87	64.20	8.68	79.16	207.60	28.05	29.04 54	54.76 7	7.40 8	9.20	1.24		0.0000		0.0000	00.0	0.0000
																			'	1		

Ph: (O) 0180-3290403, (M) 94160-17160, Tele-Fax: 0180-2671112, Website: www.haryanatesthouse.net, e-mail: info@haryanatesthouse.net, ml.dumanly.com & Consutancy Services 50-C, Sector-25, Part-II, HUDA, Panipat-132 104 (HARYANA)

Fest Results of Stack Emissions

Period: April 2012 to May 2012

Unit: Panipat Refinery

Sr. Stack Particular No.	Date of Sampling	Temp.	Temp. Diameter of Stack	Gas Velocity	Gas Flue Gas Velocity Volume at	Particulate Matter (SPM)	te Matter	Sul	Sulphur Dioxide (SO ₂)	ide	Oxide	Oxides of Nitrogen (NO.)		Carbo	Carbon Monoxide (CO)		Nickel (Ni)		Vanadium (V)		Nickel+Vanadlum Limit: (NI + N)	nadlum (+ N)
		ပ္		(m/sec.)	25°C (Nm3/ Hr.)	Limit: Gas; 10 mg/Nm3 Liquid: 100 mg/Nm3	sas: 10 Vm3) mg/Nm3	Limit: (Liquid	Limit: Gas: 50 mg/Nm3 Liquid: 1700 mg/Nm3	g/Nm3 /Nm3	Limit: Ga Liquid:	Limit: Gas: 350 mg/Nm3 Liquid: 450 mg/Nm3		Limit:Ga Liguid:	Limit:Gas:150 mg/Nm3 Liquid: 200 mg/Nm3	Mm3 m3					Liquid: 5 mg/Nm3	g/Nm3
						mg/Nm³	kg/hr.	udd	mg/Nm³	kg/hr.	udd	mg/Nm ³	kg/hr.	m mdd	mg/Nm³ K	Kg/hr.	mg/Nm³	kg/hr. rr	mg/l/m³	kg/hr.	mg/Nm ³	kg/hr.
HRSG-4 (CPP)	24.05.2012	176	3.30	7.09	139.23	29:99	0.01	79.04	207.29	0.03	40.52	76.39	10.0	80		0.00		0.000.0		0.0000	00.0	0.0000
HRSG-5 (CPP)	24.05.2012	150	3.30	6.77	141113.59	63.97	9.03	61.08	160.18	22.60	36.55	68.91	9.72	7	8.05	1.14		0.0000		0.0000	0.00	0.0000
Boller-1 (TPS)	23.05.2012	198	3.04	14.83	235591.76	91.49	21.55	168.68	442.37	104.22	71.50	134.81	31.76	9	11.50	2.71		0.0000		0.0000	0.00	0.0000
Boiler-3 (TPS)	23.05.2012	180	3.04	14.72	243136.11	99.78	21.31	137.05	359.43	87.39	67.50	127.27	30.94	on	10.35	2.52	-	0 0000		0.0000	0.00	000000
												-	-			-						
						12																
CDU/ VDU/ NSU (AVU-1)	22.05.2012	175	5.09	5.79	271099.55	44.86	12.16	102.42	268.60	72.82	27.46	51.78	14.04	9	11.50	3.12		0.0000.0		0.0000	00:0	0.0000
Reformer Heater-1 (CCRU)	22.05.2012	240	2.34	7.19	62134.95	12.15	0.75	10.78	28.27	1.76	19.92	37.56	2.33	00	9.20	0.57	0.0110	200000	0.14	0.0087	0.15	0.0094
Reformer Heater-2 (CCRU)	22.05.2012	205	1.64	7.20	32800.84	13.41	0.44	8.08	21.20	0.70	29.88	56.34	1.85	00	9.20	0:30		0.0000		0.000.0	00.00	0.0000
Reformer Heater-3 (CCRU)	22.05.2012	220	1.68	7.31	33882.99	18.03	0.61	10.78	28.26	96.0	29.23	55.10	1.87	10	11.50	0.39		0.0000		0.0000	0.00	0.0000
PRHGU	21.05.2012	1	2.64	1		-	-	7.18	18.84	1	30.78	58.04	0	80	9.20	1		1	1	1	,	
SQHQ	21.05.2012	135	1.26	6.42	26225.94	10.80	0.28	12.58	32.98	0.86	29.88	56.34	1.48	6	10.35	0.27	0.0230	0.0006	0:30	0.0079	0.32	0.0085
LP Suction Furnace (OHCU)	23.05.2012	215	2.42	7.52	73067.03	29:6	12.0	8.38	21.99	1.61	33.43	63.03	4.61	∞	9.20	29.0		0.0000		0.000.0	0.00	0.0000
Recycle Gas Heater (OHCU)	23.05.2012	190	1.35	7.44	23711.13	8.72	0.21	5.39	14.13	0.34	31.01	58.47	1.39	ω	06.9	0.16		0.0000		0.0000	0.00	0.0000
BBU Stack	17.05.2012	225	0.85	5.09	8328.13	22.89	0.19	75.45	197.87	1.65	54.92	103.54	0.86	92	11.50	0.10	090000	0.0001	0.89	0.0074	0.90	0.0075
														-			-					
MSQ	,	-												_		 						
27 HDS Heater (MSQ)	18.05.2012	178	2.22	7.11	62905.94	9.55	09:0	12.57	32.97	2.07	34.98	65.95	4.15	000	9.20	0.58	0.0190	0.0012	0.50	0.0345	0.52	0.0328

& Consutancy Services

Ph: (O) 0180-3290403, (M) 94160-17160, Tele-Fax: 0180-2671112, Website: www.haryanatesthouse.net, e-mail: info@haryanatesthouse.net, mildundully com 50-C, Sector-25, Part-II, HUDA, Panipat-132 104 (HARYANA)

Test Results of Stack Emissions

Period: April 2012 to May 2012

Unit: Panipat Refinery

Vanadium Nicket+Vanadum (V) Limit (NI+V) Liquid: 5 mg/Nm3	4	int. mg/Nm kg/nr.	1		3 0.7033	0.0212	0.0447	0.0447	,	;	0.0044	1.02
	3	\neg	2						-	ř—		
(V)	3	\neg			2.08	0.61	1.13	1.01		1	0.40	
Sanic	~		1		0.6904	0.0207	0.0438	0.0437	1	;	0.0043	1.00
>	1	mg/Nm	1		2.04	0.59	1.11	0.99	,	1	0.39	
9 6	3	kg/nr.	ı		0.0129	0.0005	0.0009	0.0000	;	;	0.0001	0.02
Nickel (Ni)	6	mg/Nm	ı		0.0380	0.0150	0.0230	0.0210	;	1	0.0130	
oxide ng/Nm3 y/Nm3	,	Kg/nr.	ı		3.89	0,40	0.36	0.36	,	1	0.10	32.03
Carbon Monoxide (CO) Limit:Gas:150 mg/Nm3 Liquid: 200 mg/Nm3	6	mg/Nm ²	11.50		11.50	11.50	9.20	8.05	9.20	11.50	9.20	
Car Limit: Liqu		mdd	9		9	은	œ	7	8	10	80	
ogen ng/Nm3 Nm3		Kg/nr.	ı		22.02	2.08	2.28	2.78	1	t	65.05	298.12
Oxides of Nitrogen (NO _x) Limit: Gas: 350 mg/Nm3 Liquid: 450 mg/Nm3	8	mg/Nm	69.15		90.39	59.35	57.62	63.03	56.84	51.77	85.26	
Oxid Limit: G Liqui		udd.	36.68		34.51	31,48	30,56	33.43	30.15	27.46	45.22	
cide g/Nm3 g/Nm3	3	Kg/nr.	}		76.54	0.91	2.05	1.87	-	1	0.36	616.34
Sulphur Dioxide (SO ₂) Limit: Gas: 50 mg/Nm3 Liquid: 1700 mg/Nm3	6	mg/Nm_	37.68		226.14	25.91	51.82	42.39	25.91	21.19	32.98	
Sul Limit: Liquid	1	mdd	14.37		86.23	9,88	19.76	16.16	9.88	8.08	12.58	
e Matter M) as: 10 m3	mg/Nm3	Kg/nif.	:		16.03	0.45	1,11	1.15	1	1	0.26	164.84
Particulate Matter (SPM) Limit: Gas: 10 mg/Nm3	Liquld: 100 mg/Nm3	mg/Nm,	ı		47.35	12.75	28.14	25.97	5	1	23.75	
Olameter Gas Flue Gas of Stack Velocity Volume at (m) 25°C (m) (Mm3/Hr)			1		338444.54	35072.79	39495.94	44170.70	1	1	11034.20	
Gas Velocity		_	ı		7.20	6.97	2.9	6.87	1		7.32	
Temp. Diameter of Stack (m)			3.05		5.10	1.70	1.80	1.80	3.40	3.40	96.0	
G C)		1		175	192	172	135	i	1	222	hr)
Date of Sampling			18.05.2012		18.05.2012	18.05.2012	18.05.2012	18.05.2012	21.05.2012	21.05.2012	21.05.2012	Total in (Kg/ hr)
Sr. Stack Particular	,		28 NHT Heater (MSQ)	F PREP	29 CDUI VDU (AVU-II)	30 HCU Stack (HCU)	31 DHDT-1 (Heater-1)	32 DHDT-2 (Heater-2)	33 HGU-76 (HGU)	34 HGU-77 (HGU)	35 DCU (Heater I & II)	[

HALL HARYANA TEST HOLJE

& Consutancy Services

50-C, Sector-25, Part-II, HUDA, Panipat-132 104 (HARYANA)

Ph: (O) 0180-3290403, (M) 94160-17160, Tele-Fax: 0180-2671112, Website: www.haryanatesthouse.net, e-mail: info@haryanatesthouse.net, ml.dua@sify.com,

Test Results of Stack Emissions

Period: May 2012

Unit: Panipat Refinery

The Control of the Co				 	100000000000000000000000000000000000000		 	
ide (H ₂ S) mg/Nm3 mg/Nm3	Kg/hr.	Q.N	N.D					
Hydrogen Suiphide (H ₂ S) Limit: Old SRU 15 mg/Nm3 Limit: New SRU 10 mg/Nm3	mg/Nm³	Q.N.	N.D			7.460		
Hydro Limit: (Limit: N	шdd	O.N.	O.N.					
de (CO) mg/Nm3 mg/Nm3	Kg/hr.	0.28	0.18					
Carbon Monoxide (CO) Limit: Old SRU 150 mg/Nm3 Limit: New SRU 100 mg/Nm3	mg/Nm³	13.80	9.20					
Carbo Limit: O Limit: N	mdd	12.00	8.00					
en (NO _x) mg/Nm3 7 mg/Nm3	kg/hr.	0.27	0.29					
Oxides of Nitrogen (NO _x) Limit: Old SRU 350 mg/Nm3 Limit: New SRU 250 mg/Nm3	mg/Nm³	13.38	15.06					
Oxides Limit: O Limit: Ne	mdd	5.10	5.74					
SO ₂)	kg/hr.	16.37	14.10					
Sulphur Dioxide (SO ₂)	mg/Nm ³	819.74	734.94					
Sulph	mdd	312.57	280.23					
Flue Gas Volume at 25°C	(Nm3/ Hr.)	19973.31	19182.06					
Gas Velocity	(m/sec.)	6.93	66.9					7.4
Temp. Diameter of Stack (m)		1.16	1.16					
Temp.	ပွ	105.00	124.00					
Date of Sampling		17.05.2012	17.05.2012					
Stack Particular		SRU New (Unit 22,24)	SRU Old (Unit 25)					

N.D.: Not Detectable

HAT. HARYANA TEST HOLJE

& Consutancy Services

50-C, Sector-25, Part-II, HUDA, Panipat-132 104 (HARYANA)

Ph: (O) 0180-3290403, (M) 94160-17160, Tele-Fax: 0180-2671112, Website: www.haryanatesthouse.net, e-mail: info@haryanatesthouse.net, ml.dun@ally.com

Test Results of Stack Emissions

Period: April 2012

Unit: Panipat Refinery

-				_	_		 		
	ide (H ₂ S) 5 mg/Nm3 0 mg/Nm3	Kg/hr.	QN	Q.N					
	Hydrogen Sulphide (H ₂ S) Limit: Old SRU 15 mg/Nm3 Limit: New SRU 10 mg/Nm3	mg/Nm ³	O.N.	O.N.					
	Hydro Limit: 0	mdd	N.D	O.N.					
	te (CO) mg/Nm3) mg/Nm3	Kg/hr.	0.24	0.15					
	Carbon Monoxide (CO) Limit: Old SRU 150 mg/Nm3 Limit: New SRU 100 mg/Nm3	mg/Nm³	11.90	7.94			0.15		
	Carbo Limit: O Limit: Ne	uudd	10.35	06.90					
	en (NO _x)) mg/Nm3 0 mg/Nm3	kg/hr.	0.41	0.35					
	Oxides of Nitrogen (NO _x) Limit: Old SRU 350 mg/Nm3 Limit: New SRU 250 mg/Nm3	mg/Nm³	20.86	18.29					
	Oxide Limit: C Limit: N	шdd	7.95	6.97					
	(2O ₂)	kg/hr.	17.28	13.44					
	Sulphur Dioxide (SO ₂)	mg/Nm³	869.60	706.55					
	Sulph	mdd	331.58	269.41					
	Flue Gas Volume at 25°C	(Nm3/ Hr.)	19876.29	19018.36					
	Gas Velocity	(m/sec.)	7.17	7.07					
	Temp. Diameter of Stack (m)		1.16	1.16					
	Temp.	ပွ	120.00	132.00					
	Date of Sampling		10.04.2012	10.04.2012					
	Stack Particular		SRU New (Unit 22,24)	SRU Old (Unit 25)					

N.D: Not Detectable

For Haryana Test House

Report on LDAR to M/s. IOCL Panipat Refinery

S.No	Unit	Component	Number of Points	Total VOC Emissions in Kg/Year	No.of points measured	Total VOC Kg year
		F	16	1.2116		
		V	6	0.1932		
		SV	2	0.6855		
		SP	6	15.7036		
1	PR unit117-	SF	1	0.0314	41	25.7033
1	PR unit 17-	ŞD	3	6.1847	41	25.7055
		OF	1 _	0.37492		
		MF	2	0.90493		
		GV	3	0.83445		
		CV	1	0.2382		
		F	42	0.4373		
		V	23	0.6691		
2	DHDS	GV	1	0.0683	70	2.637
		DS	2	0.5088		
		DP	2	0.4182		
	OHCH	F	22	0.764	35	1.6027
3	OHCU	V	13	0.8388	- 55	1.0027
4 Tan		F	13	6.2851		
		V	18	0.7713		
		GV	12	8.7423		
		HV	2	4.3809		
	Tank farm	RD	3	0.525	72	129.217
		SD	2	1.4969		
		D	1	3.58		
		DP	19	103.2325		
		SV	2	0.2		
	20	F	26	0.5621		
5	PR unitAHV01/NSU	MF	3	0.0946	37	1.9113
	United to the Control	V	8	1.2547		
		F	18	0.8038		
6	AVUII	GV	T	0.9039	30	3.4315
		V	1.0	1.7149		
7	PR UNIT CCRU	F	21	0.3507	37	13.2954
/	- FR DIVIT CORU	V	_16	12.944		10.2304
8	DHDT	F	28	1.7658	35	2.2359

IndianOil Report on LDAR to M/s. IOCL Panipat Refinery 0.4674 6 0.6247 F 30 1.0414 9 HCU 35 0.4167 ٧ 5 F 49 3.6139 70 7.6627 PDS UNIT 76 10 V 8 0.4412 13 3.4482 G۷ F 25 0.428 PDS UNIT & UNIT 35 1.3619 0.2733 11 V 4 G۷ 6 0.5606 F 29 0.9888 ٧ 0.6121 9 42 4.3265 PX - UNIT 12 G۷ 3 0.3218 OP 1 2.4038 7 F 1.2019 2.1035 14 13 PX2 ٧ 5 0.2443 G۷ 2 0.6573 F 7 0.2094 ٧ 1 0.0547 14 8.1902 PX1 14 0.164 G۷ OP 5 7.7637 F 3 0.6053 1.7033 7 15 PX2 TANK FARM ٧ 4 0.204373 4 0.2943 BATTERY LIMIT F 4 0.2943 16 F 60 3.1006 ٧ 27 6.515 PTA UNIT 107 37.8967 17 G۷ 4 0.4446 16 27.8632 OP F 0.0417 6 CCRU PR 7 0.0606 18 ٧ 1 0.0188 0.088 FCCU PR 4 F 0.088 19 4 GASOLINE 2 0.0271 F 2 0.0271 20 MEROX F 0.3941 9 OM &S TANK 0.4617 15 21 ٧ 5 0.05871 FARM G۷ 0.0088 245.252 713 **TOTAL** Total VOC Loss in Kg/year Before Repair includes Zero Factor Value =245.252

Report on LDAR to M/s. IOCL Panipat Refinery

	SUMMARY SHEET OF IOCL - PANIPI DATE: 27.0	ET, E 2.201	BEN 2 TO	ZENE EN 29.02.2	IISSIONS MEASU	JREMENTS
		F	15	0.467		
1	PX-PTA Plant	V	1	0.0355	19	1.2499
		OP	_3_	0.7473		
2	Reformate Splitter	F	2	0.0369	3	0.1848
		OP	1	0.1479		
3	Tatoray	F	4	0.0807	4	0.0807
4	Isomar	F	5	0.1631	5	0.1631
5	Tank farm	F	2	0.0507	2	0.0507
6	Benzene tank	F	5	1.4127	18	2.9207
Ľ	Delizere tarik	V	13	1.499		2.0207
		F	10	14.2492		
7	Benzene tank	V	6	0.7889	19	16.7409
'	Defizerie tarik	sv	1	0.2484	13	10.7403
		G۷	2	1.4545		
		F	2	0.3914		
8	Tank 9A (New Number - 5209 C)	G۷	3	0.3763	9	13.1588
. •	Tank 9A (New Number - 5209 C)	DP	1	1.893	9	13.1300
 		OP	3	10.4982		
		F	2	0.826		
9	Tank B 5209 B	GV	3	1.8915	9	14.4293
9	141K B 3209 B	OP	3	9.7663	ÿ	14.42.55
		DP	1	1.9454		
		F	2	2.0829		
10	Tank C 5209 A	GV	3	1.2781	9	23.9363
10	TAIIK C 5209 A	OP	3	18.8023	J	23.3303
		IDP	1	1.337		
	Total				97	72.9152

Total benzene Loss in Kg/year Before Repair includes Zero Factor Value =72.9152

PSV - Pressure Safety Valve; PS - Pump Seal; OP - Open Ends;

GV - Gland Valves; SV - Small Valve; SP - Sampling Point; SF - Small Flange

MF - Motor Flange; CV - Control Valve; DP - Drain Point; OF - Open Flange;

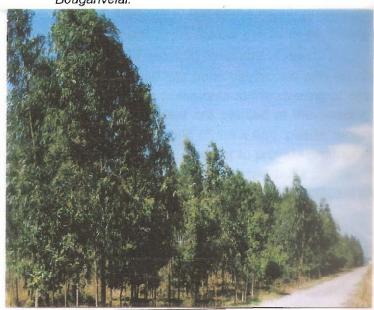
SD - Sampling Drain; RD - Roof Drain; HV - Hand Valve; SD - Syphon Drain

Report on LDAR to M/s. IOCL Panipat Refinery

CONCLUSION:

The results are submitted component wise in the enclosed Annexure-I & Annexure -II. As per CPCB guidelines no components are detected more than the standard values of 3000ppmv and 5000ppmv.

Based on the calculation and concentrations of VOC in the equipment, we took default value 1 for Response Factor (RF). The total loss of volatiles emission is 245.252 Kg/year with 713 components and the total loss of benzene is 72.9152 Kg/year with 97 components (The section wise loss enclosed in summary sheet—Annexure- III). The total VOC and benzene emissions are very low so IOCL-Panipet is excellent control of VOC loss in the plant. This has to be extrapolated to the real number of components (non measured, no reachable components).


Detail of Plantation, Greenbelt, Ecopark, Herbal Park

Green Belts:

Panipat refinery, since conceptualization of the project, is trying to balance the ecosystem in a more systematic way. The refinery developed a Green belt in close coordination with Haryana Forest department. The details are given below:

Green Belts around the Refinery:

- The tree plantation was started in the year 1993-94 i.e. much before commissioning of the Panipat Refinery.
- 500 acres Greenbelt in S-E direction of the Refinery.
- 14 KM long peripheral Greenbelt.
- 40 different species of trees planted in Green Belts. Some of the varieties are: Eucalyptus, Papri, Poplar, Sulabul, Semai, Arjun, Teak, Amaltas, Mango, Jamum, Kachnar, Sisham, Gul Mohar, Neem, Kaner Bottle Brush, Silver Oak, Kasarina, Chandni, Toon, Bouganvelai.

Green Belt in the Township

- Plantation of trees in Refinery Township in 20 ha area.
- Types of trees planted: Arjun, Shisham, Neem, Jamun/Jamoa, Papri, Bottle Brush, Eucalyptus, Boegunvillea, Kaner, Silver Oak, Kikar, Alstonia
- A beautiful Herbal Park developed in the township under the guidance of renowned horticulturists from Yamnunanagar Herbal Park. The part is using treated effluent from STP for irrigation.
- Rs. 34.36 lacs given to the District Authorities of Karnal & Panipat for development of various parks & trees.
- Around Rs. 300 lacs were spent for development of Greenbelt. About Rs. 25-27 lacs per annum is being spent on maintaining the Green Belts thru' Haryana Forest Department. In the year 2009-10, the Refinery has spent around Rs. 24.5 lacs on maintenance.

Green Beit at PNCP:

- Panipat Refinery has also developed a New Green belt area at the village Baljatan, which is adjacent to Naphtha Cracker project (NCP) site.
- The green belt is situated at the outer periphery of the NCP. It consists of 50m wide strips along 7 km long periphery of NCP.
- This green belt has been developed with an objective of growing mixed varieties of plants including fruit plants at the spacing of 4m x 4m. Trees, which grows up to the height of 20-25 feet are planted at the spacing of 8m x 8m (one alternate trees in each direction of grid of 4m x 4m), plants, which grow up to 10 to 15 feet, planted in the remaining pits. In order to provide greenery in the initial years, small fruit bearing shrubs are planted between two fruits plants. The area will be irrigated by making water channels connecting our treated effluent piping network.

The trees planted are:

- Tall fruit plants like Mango, Jack fruit, Jamun and Kadamb
- Medium size fruit plants like Aonla, Guava, Ber and Aru
- Medium size shrubs like Lemon, Karonda and Anar.

Eco-Park in ETPs area:

An eco-park has been developed in the south side of ETP-2 having landscaping. The park is nurtured by using treated effluent. The park consists of a small water reservoir wherein fishes have also been kept. A scenic view has been created by providing artistic railing, gates made-up off iron & stones.

Eco-Ponds (Polishing Ponds) located outside the Refinery boundary:

Total 4 nos. of Polishing Ponds are existing.

The total holding capacity of these Polishing Ponds:

PR PP : 125000 m3 PTA-PP A : 28000 m3 PTA-PP B : 30000 m3 PTA-PP C : 64000 m3

Panipat Refinery

- Treated effluent from ETP-1, ETP-2 & PTA-ETP is stored in these ponds for natural aeration & UV rays treatment.
- Treated water from the ponds is used for watering the green belt.
- Treated effluent is stored in Eco Ponds as intermediate storage and recycled back to ETP for further treatment and for reuse in Fire Water Network, Cooling Towers etc.
- A large number of migratory birds visit the area particularly in winter season.
- A scenic view has been created by providing artistic metal structures, a pathway
 using pre-cast blocks, planting lawns & bushes. Thereby it has taken a shape of
 beautiful picnic spot for the PRian families.

Storm water ponds inside the Refinery

Since inception the Refinery has storm water collection systems and thereby has constructed two nos. Storm Water Ponds of total capacity 1.5 lac KL. These ponds received water from all over the Refinery through the network of Storm Water Drains. To improve the quality of Storm Water 9 nos. oil catch pits have been constructed to prevent the ingress of oil in the Storm Water Ponds.

Books on trees & herbs:

Two books have been published by the Refinery on the World Environment Day, one book is on trees in the Green belt and the other book is about herbal plants in our Herbal Parks.

Panipat Green Fund:

Apart from our own initiatives, Panipat Refinery has taken a lot of interest in greening the environment by contributing towards Panipat Green Fund, which has been formed by District Conservator of Forest, Panipat. The refinery has been associating for tree plantation in Panipat City, since 1998-99 and around 6500 trees have been planted.

In order to conserve the environment, Panipat refinery and the District authorities are working hand in hand and an amount of Rs 34.36 lacs have been given to the District authorities in the districts of Karnal and Panipat for the following purposes:

- To provide 1000 tree guard at National Highways, Panipat and Karnal
- Beautification of National Park, Narain Singh Park & Hero Park at Model Town of Panipat
- Development of Hali Park, Marla Park, Librarywala Park.
- DAV parks in the Panipat city and nearby locations

Total Tree Planted

Location	Area in Ha	No. of Tree Planted
Eco-Park	128 Ha	88,550
Green Belt / Bio-drainage	130 Ha	3,13,335
Township	26 Ha	16,500
Refinery Road	45 Ha	34,650
Township – Dadlana Road	3 Ha	4,270
RWTP (old)	8 Ha	6,900
NCP Green Belt	30 Ha	35,600
Other public place	6 Ha	3,750
Newly Acquire Land (387 acre)	7.5 Ha	4,700
Tota	1	5,08,225

Panipat Refinery

Detail of Species Planted

a of Species I famed		
1. Kaijicia	13 Legestovia	25. Jaerenda 37. Legestonia
2. Shisham	14. Papri	26. Anaar
3. Neem	15. Chukresia	27. Budr
 Kaehvav 	16. Aovla	, 28 Pipal
5. Jamun / Jamoa	17. Gulmohar	29. Kauair
6. Arjun	18. Bottle bram	30. Bogan bail
7. Alestonia	19. Nimboo	31. Aeralvpornis
8. Amal Tas	20. Amrud	32. Benjamin
9. Kadavb	21. Cassia galuca	33. Cassia shamia
10. Kussum	22. Safeda	34. Toon
11. Poplar	23. Bail Patthar	35. Guddal
12. Casuarinas	24. Chandni	36. Siros

HARYANA STATE POLLUTION CONTROL BOARD C-11, SECTOR 6, PANCHKULA PH- 2577870-73

E-mail: hspcb.pkl@ sify.com

Regd.A.D. NO.HSPCB/20134 / 8 22

Dated: 0/3//2

To

Mis 2 olian one Curp un.
V. Bahali Pai Par
Pari Part Papring Pai fat

Sub: Authorization for operating a facility for collection, reception, treatment, storage, transportation and disposal of hazardous wastes. 2012 - 2017

Please refer to your Authorization application form received through Regional Officer, vide his letter No.HSPCB/ 9670 dated 27170 received in this office on the subject noted above.

Number of authorization and date of issue as above.

 M/s as above is hereby granted an authorization to operate a facility for collection, reception, treatment, storage, Transportation and disposal of hazardous wastes on the premises situated at as above

3. The authorization granted to operate a facility for collection, reception, treatment, storage, transportation and disposal of hazardous wastes.

4. The authorization shall be in force for a period of upto 31.3.2273

 The authorization is subjected to the conditions stated below and such conditions as may be specified in the rules for the time being in force under the Environment (protection) Act, 1986.

TERMS AND CONDITIONS OF AUTHORIZATION

1. The authorization shall comply with the provisions of the Environment (protection) Act, 1986 and the rules made thereunder.

 The authorization or its renewal shall be produced for inspection at the request of an officer authorized by the State Pollution Control Board.

 The person authorized shall not rent, lend, sell transfer or otherwise transport the hazardous wastes without obtaining prior permission of the State Pollution control Board.

 Any unauthorized change in personnel, equipment as working conditions as mentioned in the application by the person authorized shall constitute a breach of his authorization.

 It is the duty of the authorized person to take prior permission of the State Pollution Control Board to close down the facility.

6. An application for the renewal of an authorization shall be made as laid down in rule 5(6)(ii).

7. The unit should have the necessary facilities for collection, reception, treatment, Transport and disposal of such wastes under the rule. In case of deadly toxic wastes such as Cyanide, Chromium, Nickel, Zinc, etc., the unit shall make arrangement for the pre-treatment before dumping it in the disposal site so that the toxic element does not leach down to pollute the underground water resources.

8. Each unit shall have its own disposal at his site own costs at his own premises for the disposal of these wastes for a period of at least two years. In case he does not have any land in his premises, then shall make appropriate alternative arrangement. The site for